DOSBox-X
|
00001 // **************************************************************************** 00002 // * This file is part of the xBRZ project. It is distributed under * 00003 // * GNU General Public License: https://www.gnu.org/licenses/gpl-3.0 * 00004 // * Copyright (C) Zenju (zenju AT gmx DOT de) - All Rights Reserved * 00005 // * * 00006 // * Additionally and as a special exception, the author gives permission * 00007 // * to link the code of this program with the following libraries * 00008 // * (or with modified versions that use the same licenses), and distribute * 00009 // * linked combinations including the two: MAME, FreeFileSync, Snes9x, ePSXe * 00010 // * You must obey the GNU General Public License in all respects for all of * 00011 // * the code used other than MAME, FreeFileSync, Snes9x, ePSXe. * 00012 // * If you modify this file, you may extend this exception to your version * 00013 // * of the file, but you are not obligated to do so. If you do not wish to * 00014 // * do so, delete this exception statement from your version. * 00015 // **************************************************************************** 00016 00017 #include "xbrz.h" 00018 #include <cassert> 00019 #include <vector> 00020 #include <algorithm> 00021 #include <cmath> //std::sqrt 00022 #include "xbrz_tools.h" 00023 00024 using namespace xbrz; 00025 00026 00027 namespace 00028 { 00029 template <unsigned int M, unsigned int N> inline 00030 uint32_t gradientRGB(uint32_t pixFront, uint32_t pixBack) //blend front color with opacity M / N over opaque background: http://en.wikipedia.org/wiki/Alpha_compositing#Alpha_blending 00031 { 00032 static_assert(0 < M && M < N && N <= 1000, ""); 00033 00034 auto calcColor = [](unsigned char colFront, unsigned char colBack) -> unsigned char { return (colFront * M + colBack * (N - M)) / N; }; 00035 00036 return makePixel(calcColor(getRed (pixFront), getRed (pixBack)), 00037 calcColor(getGreen(pixFront), getGreen(pixBack)), 00038 calcColor(getBlue (pixFront), getBlue (pixBack))); 00039 } 00040 00041 00042 template <unsigned int M, unsigned int N> inline 00043 uint32_t gradientARGB(uint32_t pixFront, uint32_t pixBack) //find intermediate color between two colors with alpha channels (=> NO alpha blending!!!) 00044 { 00045 static_assert(0 < M && M < N && N <= 1000, ""); 00046 00047 const unsigned int weightFront = getAlpha(pixFront) * M; 00048 const unsigned int weightBack = getAlpha(pixBack) * (N - M); 00049 const unsigned int weightSum = weightFront + weightBack; 00050 if (weightSum == 0) 00051 return 0; 00052 00053 auto calcColor = [=](unsigned char colFront, unsigned char colBack) 00054 { 00055 return static_cast<unsigned char>((colFront * weightFront + colBack * weightBack) / weightSum); 00056 }; 00057 00058 return makePixel(static_cast<unsigned char>(weightSum / N), 00059 calcColor(getRed (pixFront), getRed (pixBack)), 00060 calcColor(getGreen(pixFront), getGreen(pixBack)), 00061 calcColor(getBlue (pixFront), getBlue (pixBack))); 00062 } 00063 00064 00065 //inline 00066 //double fastSqrt(double n) 00067 //{ 00068 // __asm //speeds up xBRZ by about 9% compared to std::sqrt which internally uses the same assembler instructions but adds some "fluff" 00069 // { 00070 // fld n 00071 // fsqrt 00072 // } 00073 //} 00074 // 00075 00076 00077 #ifdef _MSC_VER 00078 #define FORCE_INLINE __forceinline 00079 #elif defined __GNUC__ 00080 #define FORCE_INLINE __attribute__((always_inline)) inline 00081 #else 00082 #define FORCE_INLINE inline 00083 #endif 00084 00085 00086 enum RotationDegree //clock-wise 00087 { 00088 ROT_0, 00089 ROT_90, 00090 ROT_180, 00091 ROT_270 00092 }; 00093 00094 //calculate input matrix coordinates after rotation at compile time 00095 template <RotationDegree rotDeg, size_t I, size_t J, size_t N> 00096 struct MatrixRotation; 00097 00098 template <size_t I, size_t J, size_t N> 00099 struct MatrixRotation<ROT_0, I, J, N> 00100 { 00101 static const size_t I_old = I; 00102 static const size_t J_old = J; 00103 }; 00104 00105 template <RotationDegree rotDeg, size_t I, size_t J, size_t N> //(i, j) = (row, col) indices, N = size of (square) matrix 00106 struct MatrixRotation 00107 { 00108 static const size_t I_old = N - 1 - MatrixRotation<static_cast<RotationDegree>(rotDeg - 1), I, J, N>::J_old; //old coordinates before rotation! 00109 static const size_t J_old = MatrixRotation<static_cast<RotationDegree>(rotDeg - 1), I, J, N>::I_old; // 00110 }; 00111 00112 00113 template <size_t N, RotationDegree rotDeg> 00114 class OutputMatrix 00115 { 00116 public: 00117 OutputMatrix(uint32_t* out, int outWidth) : //access matrix area, top-left at position "out" for image with given width 00118 out_(out), 00119 outWidth_(outWidth) {} 00120 00121 template <size_t I, size_t J> 00122 uint32_t& ref() const 00123 { 00124 static const size_t I_old = MatrixRotation<rotDeg, I, J, N>::I_old; 00125 static const size_t J_old = MatrixRotation<rotDeg, I, J, N>::J_old; 00126 return *(out_ + J_old + I_old * outWidth_); 00127 } 00128 00129 private: 00130 uint32_t* out_; 00131 const int outWidth_; 00132 }; 00133 00134 00135 template <class T> inline 00136 T square(T value) { return value * value; } 00137 00138 00139 #if 0 00140 inline 00141 double distRGB(uint32_t pix1, uint32_t pix2) 00142 { 00143 const double r_diff = static_cast<int>(getRed (pix1)) - getRed (pix2); 00144 const double g_diff = static_cast<int>(getGreen(pix1)) - getGreen(pix2); 00145 const double b_diff = static_cast<int>(getBlue (pix1)) - getBlue (pix2); 00146 00147 //euklidean RGB distance 00148 return std::sqrt(square(r_diff) + square(g_diff) + square(b_diff)); 00149 } 00150 #endif 00151 00152 00153 inline 00154 double distYCbCr(uint32_t pix1, uint32_t pix2, double lumaWeight) 00155 { 00156 //http://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion 00157 //YCbCr conversion is a matrix multiplication => take advantage of linearity by subtracting first! 00158 const int r_diff = static_cast<int>(getRed (pix1)) - getRed (pix2); //we may delay division by 255 to after matrix multiplication 00159 const int g_diff = static_cast<int>(getGreen(pix1)) - getGreen(pix2); // 00160 const int b_diff = static_cast<int>(getBlue (pix1)) - getBlue (pix2); //substraction for int is noticeable faster than for double! 00161 00162 //const double k_b = 0.0722; //ITU-R BT.709 conversion 00163 //const double k_r = 0.2126; // 00164 const double k_b = 0.0593; //ITU-R BT.2020 conversion 00165 const double k_r = 0.2627; // 00166 const double k_g = 1 - k_b - k_r; 00167 00168 const double scale_b = 0.5 / (1 - k_b); 00169 const double scale_r = 0.5 / (1 - k_r); 00170 00171 const double y = k_r * r_diff + k_g * g_diff + k_b * b_diff; //[!], analog YCbCr! 00172 const double c_b = scale_b * (b_diff - y); 00173 const double c_r = scale_r * (r_diff - y); 00174 00175 //we skip division by 255 to have similar range like other distance functions 00176 return std::sqrt(square(lumaWeight * y) + square(c_b) + square(c_r)); 00177 } 00178 00179 00180 inline 00181 double distYCbCrBuffered(uint32_t pix1, uint32_t pix2) 00182 { 00183 //30% perf boost compared to plain distYCbCr()! 00184 //consumes 64 MB memory; using double is only 2% faster, but takes 128 MB 00185 static const std::vector<float> diffToDist = [] 00186 { 00187 std::vector<float> tmp; 00188 00189 for (uint32_t i = 0; i < 256 * 256 * 256; ++i) //startup time: 114 ms on Intel Core i5 (four cores) 00190 { 00191 const int r_diff = getByte<2>(i) * 2 - 0xFF; 00192 const int g_diff = getByte<1>(i) * 2 - 0xFF; 00193 const int b_diff = getByte<0>(i) * 2 - 0xFF; 00194 00195 const double k_b = 0.0593; //ITU-R BT.2020 conversion 00196 const double k_r = 0.2627; // 00197 const double k_g = 1 - k_b - k_r; 00198 00199 const double scale_b = 0.5 / (1 - k_b); 00200 const double scale_r = 0.5 / (1 - k_r); 00201 00202 const double y = k_r * r_diff + k_g * g_diff + k_b * b_diff; //[!], analog YCbCr! 00203 const double c_b = scale_b * (b_diff - y); 00204 const double c_r = scale_r * (r_diff - y); 00205 00206 tmp.push_back(static_cast<float>(std::sqrt(square(y) + square(c_b) + square(c_r)))); 00207 } 00208 return tmp; 00209 }(); 00210 00211 //if (pix1 == pix2) -> 8% perf degradation! 00212 // return 0; 00213 //if (pix1 < pix2) 00214 // std::swap(pix1, pix2); -> 30% perf degradation!!! 00215 #if 1 00216 const int r_diff = static_cast<int>(getRed (pix1)) - getRed (pix2); 00217 const int g_diff = static_cast<int>(getGreen(pix1)) - getGreen(pix2); 00218 const int b_diff = static_cast<int>(getBlue (pix1)) - getBlue (pix2); 00219 00220 return diffToDist[size_t((((r_diff + 0xFF) / 2) << 16) | //slightly reduce precision (division by 2) to squeeze value into single byte 00221 (((g_diff + 0xFF) / 2) << 8) | 00222 (((b_diff + 0xFF) / 2) ))]; 00223 #else //not noticeably faster: 00224 const int r_diff_tmp = ((pix1 & 0xFF0000) + 0xFF0000 - (pix2 & 0xFF0000)) / 2; 00225 const int g_diff_tmp = ((pix1 & 0x00FF00) + 0x00FF00 - (pix2 & 0x00FF00)) / 2; //slightly reduce precision (division by 2) to squeeze value into single byte 00226 const int b_diff_tmp = ((pix1 & 0x0000FF) + 0x0000FF - (pix2 & 0x0000FF)) / 2; 00227 00228 return diffToDist[(r_diff_tmp & 0xFF0000) | (g_diff_tmp & 0x00FF00) | (b_diff_tmp & 0x0000FF)]; 00229 #endif 00230 } 00231 00232 00233 enum BlendType 00234 { 00235 BLEND_NONE = 0, 00236 BLEND_NORMAL, //a normal indication to blend 00237 BLEND_DOMINANT, //a strong indication to blend 00238 //attention: BlendType must fit into the value range of 2 bit!!! 00239 }; 00240 00241 struct BlendResult 00242 { 00243 BlendType 00244 blend_f, blend_g, 00245 blend_j, blend_k; 00246 }; 00247 00248 00249 struct Kernel_4x4 //kernel for preprocessing step 00250 { 00251 uint32_t 00252 a, b, c, d, 00253 e, f, g, h, 00254 i, j, k, l, 00255 m, n, o, p; 00256 }; 00257 00258 /* 00259 input kernel area naming convention: 00260 ----------------- 00261 | A | B | C | D | 00262 ----|---|---|---| 00263 | E | F | G | H | //evaluate the four corners between F, G, J, K 00264 ----|---|---|---| //input pixel is at position F 00265 | I | J | K | L | 00266 ----|---|---|---| 00267 | M | N | O | P | 00268 ----------------- 00269 */ 00270 template <class ColorDistance> 00271 FORCE_INLINE //detect blend direction 00272 BlendResult preProcessCorners(const Kernel_4x4& ker, const xbrz::ScalerCfg& cfg) //result: F, G, J, K corners of "GradientType" 00273 { 00274 BlendResult result = {}; 00275 00276 if ((ker.f == ker.g && 00277 ker.j == ker.k) || 00278 (ker.f == ker.j && 00279 ker.g == ker.k)) 00280 return result; 00281 00282 auto dist = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.luminanceWeight); }; 00283 00284 const int weight = 4; 00285 double jg = dist(ker.i, ker.f) + dist(ker.f, ker.c) + dist(ker.n, ker.k) + dist(ker.k, ker.h) + weight * dist(ker.j, ker.g); 00286 double fk = dist(ker.e, ker.j) + dist(ker.j, ker.o) + dist(ker.b, ker.g) + dist(ker.g, ker.l) + weight * dist(ker.f, ker.k); 00287 00288 if (jg < fk) //test sample: 70% of values max(jg, fk) / min(jg, fk) are between 1.1 and 3.7 with median being 1.8 00289 { 00290 const bool dominantGradient = cfg.dominantDirectionThreshold * jg < fk; 00291 if (ker.f != ker.g && ker.f != ker.j) 00292 result.blend_f = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; 00293 00294 if (ker.k != ker.j && ker.k != ker.g) 00295 result.blend_k = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; 00296 } 00297 else if (fk < jg) 00298 { 00299 const bool dominantGradient = cfg.dominantDirectionThreshold * fk < jg; 00300 if (ker.j != ker.f && ker.j != ker.k) 00301 result.blend_j = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; 00302 00303 if (ker.g != ker.f && ker.g != ker.k) 00304 result.blend_g = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; 00305 } 00306 return result; 00307 } 00308 00309 struct Kernel_3x3 00310 { 00311 uint32_t 00312 a, b, c, 00313 d, e, f, 00314 g, h, i; 00315 }; 00316 00317 #define DEF_GETTER(x) template <RotationDegree rotDeg> uint32_t inline get_##x(const Kernel_3x3& ker) { return ker.x; } 00318 //we cannot and NEED NOT write "ker.##x" since ## concatenates preprocessor tokens but "." is not a token 00319 DEF_GETTER(a) DEF_GETTER(b) DEF_GETTER(c) 00320 DEF_GETTER(d) DEF_GETTER(e) DEF_GETTER(f) 00321 DEF_GETTER(g) DEF_GETTER(h) DEF_GETTER(i) 00322 #undef DEF_GETTER 00323 00324 #define DEF_GETTER(x, y) template <> inline uint32_t get_##x<ROT_90>(const Kernel_3x3& ker) { return ker.y; } 00325 DEF_GETTER(a, g) DEF_GETTER(b, d) DEF_GETTER(c, a) 00326 DEF_GETTER(d, h) DEF_GETTER(e, e) DEF_GETTER(f, b) 00327 DEF_GETTER(g, i) DEF_GETTER(h, f) DEF_GETTER(i, c) 00328 #undef DEF_GETTER 00329 00330 #define DEF_GETTER(x, y) template <> inline uint32_t get_##x<ROT_180>(const Kernel_3x3& ker) { return ker.y; } 00331 DEF_GETTER(a, i) DEF_GETTER(b, h) DEF_GETTER(c, g) 00332 DEF_GETTER(d, f) DEF_GETTER(e, e) DEF_GETTER(f, d) 00333 DEF_GETTER(g, c) DEF_GETTER(h, b) DEF_GETTER(i, a) 00334 #undef DEF_GETTER 00335 00336 #define DEF_GETTER(x, y) template <> inline uint32_t get_##x<ROT_270>(const Kernel_3x3& ker) { return ker.y; } 00337 DEF_GETTER(a, c) DEF_GETTER(b, f) DEF_GETTER(c, i) 00338 DEF_GETTER(d, b) DEF_GETTER(e, e) DEF_GETTER(f, h) 00339 DEF_GETTER(g, a) DEF_GETTER(h, d) DEF_GETTER(i, g) 00340 #undef DEF_GETTER 00341 00342 00343 //compress four blend types into a single byte 00344 //inline BlendType getTopL (unsigned char b) { return static_cast<BlendType>(0x3 & b); } 00345 inline BlendType getTopR (unsigned char b) { return static_cast<BlendType>(0x3 & (b >> 2)); } 00346 inline BlendType getBottomR(unsigned char b) { return static_cast<BlendType>(0x3 & (b >> 4)); } 00347 inline BlendType getBottomL(unsigned char b) { return static_cast<BlendType>(0x3 & (b >> 6)); } 00348 00349 inline void setTopL (unsigned char& b, BlendType bt) { b |= bt; } //buffer is assumed to be initialized before preprocessing! 00350 inline void setTopR (unsigned char& b, BlendType bt) { b |= (bt << 2); } 00351 inline void setBottomR(unsigned char& b, BlendType bt) { b |= (bt << 4); } 00352 inline void setBottomL(unsigned char& b, BlendType bt) { b |= (bt << 6); } 00353 00354 inline bool blendingNeeded(unsigned char b) { return b != 0; } 00355 00356 template <RotationDegree rotDeg> inline 00357 unsigned char rotateBlendInfo(unsigned char b) { return b; } 00358 template <> inline unsigned char rotateBlendInfo<ROT_90 >(unsigned char b) { return ((b << 2) | (b >> 6)) & 0xff; } 00359 template <> inline unsigned char rotateBlendInfo<ROT_180>(unsigned char b) { return ((b << 4) | (b >> 4)) & 0xff; } 00360 template <> inline unsigned char rotateBlendInfo<ROT_270>(unsigned char b) { return ((b << 6) | (b >> 2)) & 0xff; } 00361 00362 00363 #ifndef NDEBUG 00364 int debugPixelX = -1; 00365 int debugPixelY = 12; 00366 __declspec(thread) bool breakIntoDebugger = false; 00367 #endif 00368 00369 00370 /* 00371 input kernel area naming convention: 00372 ------------- 00373 | A | B | C | 00374 ----|---|---| 00375 | D | E | F | //input pixel is at position E 00376 ----|---|---| 00377 | G | H | I | 00378 ------------- 00379 */ 00380 template <class Scaler, class ColorDistance, RotationDegree rotDeg> 00381 FORCE_INLINE //perf: quite worth it! 00382 void blendPixel(const Kernel_3x3& ker, 00383 uint32_t* target, int trgWidth, 00384 unsigned char blendInfo, //result of preprocessing all four corners of pixel "e" 00385 const xbrz::ScalerCfg& cfg) 00386 { 00387 #define a get_a<rotDeg>(ker) 00388 #define b get_b<rotDeg>(ker) 00389 #define c get_c<rotDeg>(ker) 00390 #define d get_d<rotDeg>(ker) 00391 #define e get_e<rotDeg>(ker) 00392 #define f get_f<rotDeg>(ker) 00393 #define g get_g<rotDeg>(ker) 00394 #define h get_h<rotDeg>(ker) 00395 #define i get_i<rotDeg>(ker) 00396 00397 #ifndef NDEBUG 00398 if (breakIntoDebugger) 00399 __debugbreak(); //__asm int 3; 00400 #endif 00401 00402 (void)a; //silence Clang's -Wunused-function 00403 00404 const unsigned char blend = rotateBlendInfo<rotDeg>(blendInfo); 00405 00406 if (getBottomR(blend) >= BLEND_NORMAL) 00407 { 00408 auto eq = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.luminanceWeight) < cfg.equalColorTolerance; }; 00409 auto dist = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.luminanceWeight); }; 00410 00411 const bool doLineBlend = [&]() -> bool 00412 { 00413 if (getBottomR(blend) >= BLEND_DOMINANT) 00414 return true; 00415 00416 //make sure there is no second blending in an adjacent rotation for this pixel: handles insular pixels, mario eyes 00417 if (getTopR(blend) != BLEND_NONE && !eq(e, g)) //but support double-blending for 90° corners 00418 return false; 00419 if (getBottomL(blend) != BLEND_NONE && !eq(e, c)) 00420 return false; 00421 00422 //no full blending for L-shapes; blend corner only (handles "mario mushroom eyes") 00423 if (!eq(e, i) && eq(g, h) && eq(h, i) && eq(i, f) && eq(f, c)) 00424 return false; 00425 00426 return true; 00427 }(); 00428 00429 const uint32_t px = dist(e, f) <= dist(e, h) ? f : h; //choose most similar color 00430 00431 OutputMatrix<Scaler::scale, rotDeg> out(target, trgWidth); 00432 00433 if (doLineBlend) 00434 { 00435 const double fg = dist(f, g); //test sample: 70% of values max(fg, hc) / min(fg, hc) are between 1.1 and 3.7 with median being 1.9 00436 const double hc = dist(h, c); // 00437 00438 const bool haveShallowLine = cfg.steepDirectionThreshold * fg <= hc && e != g && d != g; 00439 const bool haveSteepLine = cfg.steepDirectionThreshold * hc <= fg && e != c && b != c; 00440 00441 if (haveShallowLine) 00442 { 00443 if (haveSteepLine) 00444 Scaler::blendLineSteepAndShallow(px, out); 00445 else 00446 Scaler::blendLineShallow(px, out); 00447 } 00448 else 00449 { 00450 if (haveSteepLine) 00451 Scaler::blendLineSteep(px, out); 00452 else 00453 Scaler::blendLineDiagonal(px, out); 00454 } 00455 } 00456 else 00457 Scaler::blendCorner(px, out); 00458 } 00459 00460 #undef a 00461 #undef b 00462 #undef c 00463 #undef d 00464 #undef e 00465 #undef f 00466 #undef g 00467 #undef h 00468 #undef i 00469 } 00470 00471 00472 template <class Scaler, class ColorDistance> //scaler policy: see "Scaler2x" reference implementation 00473 void scaleImage(const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight, const xbrz::ScalerCfg& cfg, int yFirst, int yLast) 00474 { 00475 yFirst = std::max(yFirst, 0); 00476 yLast = std::min(yLast, srcHeight); 00477 if (yFirst >= yLast || srcWidth <= 0) 00478 return; 00479 00480 const int trgWidth = srcWidth * Scaler::scale; 00481 00482 //"use" space at the end of the image as temporary buffer for "on the fly preprocessing": we even could use larger area of 00483 //"sizeof(uint32_t) * srcWidth * (yLast - yFirst)" bytes without risk of accidental overwriting before accessing 00484 const int bufferSize = srcWidth; 00485 unsigned char* preProcBuffer = reinterpret_cast<unsigned char*>(trg + (size_t)yLast * Scaler::scale * trgWidth) - bufferSize; 00486 std::fill(preProcBuffer, preProcBuffer + bufferSize, '\0'); 00487 static_assert(BLEND_NONE == 0, ""); 00488 00489 //initialize preprocessing buffer for first row of current stripe: detect upper left and right corner blending 00490 //this cannot be optimized for adjacent processing stripes; we must not allow for a memory race condition! 00491 if (yFirst > 0) 00492 { 00493 const int y = yFirst - 1; 00494 00495 const uint32_t* s_m1 = src + (size_t)srcWidth * std::max(y - 1, 0); 00496 const uint32_t* s_0 = src + (size_t)srcWidth * y; //center line 00497 const uint32_t* s_p1 = src + (size_t)srcWidth * std::min(y + 1, srcHeight - 1); 00498 const uint32_t* s_p2 = src + (size_t)srcWidth * std::min(y + 2, srcHeight - 1); 00499 00500 for (int x = 0; x < srcWidth; ++x) 00501 { 00502 const int x_m1 = std::max(x - 1, 0); 00503 const int x_p1 = std::min(x + 1, srcWidth - 1); 00504 const int x_p2 = std::min(x + 2, srcWidth - 1); 00505 00506 Kernel_4x4 ker = {}; //perf: initialization is negligible 00507 ker.a = s_m1[x_m1]; //read sequentially from memory as far as possible 00508 ker.b = s_m1[x]; 00509 ker.c = s_m1[x_p1]; 00510 ker.d = s_m1[x_p2]; 00511 00512 ker.e = s_0[x_m1]; 00513 ker.f = s_0[x]; 00514 ker.g = s_0[x_p1]; 00515 ker.h = s_0[x_p2]; 00516 00517 ker.i = s_p1[x_m1]; 00518 ker.j = s_p1[x]; 00519 ker.k = s_p1[x_p1]; 00520 ker.l = s_p1[x_p2]; 00521 00522 ker.m = s_p2[x_m1]; 00523 ker.n = s_p2[x]; 00524 ker.o = s_p2[x_p1]; 00525 ker.p = s_p2[x_p2]; 00526 00527 const BlendResult res = preProcessCorners<ColorDistance>(ker, cfg); 00528 /* 00529 preprocessing blend result: 00530 --------- 00531 | F | G | //evalute corner between F, G, J, K 00532 ----|---| //input pixel is at position F 00533 | J | K | 00534 --------- 00535 */ 00536 setTopR(preProcBuffer[x], res.blend_j); 00537 00538 if (x + 1 < bufferSize) 00539 setTopL(preProcBuffer[x + 1], res.blend_k); 00540 } 00541 } 00542 //------------------------------------------------------------------------------------ 00543 00544 for (int y = yFirst; y < yLast; ++y) 00545 { 00546 uint32_t* out = trg + (size_t)Scaler::scale * y * trgWidth; //consider MT "striped" access 00547 00548 const uint32_t* s_m1 = src + (size_t)srcWidth * std::max(y - 1, 0); 00549 const uint32_t* s_0 = src + (size_t)srcWidth * y; //center line 00550 const uint32_t* s_p1 = src + (size_t)srcWidth * std::min(y + 1, srcHeight - 1); 00551 const uint32_t* s_p2 = src + (size_t)srcWidth * std::min(y + 2, srcHeight - 1); 00552 00553 unsigned char blend_xy1 = 0; //corner blending for current (x, y + 1) position 00554 00555 for (int x = 0; x < srcWidth; ++x, out += Scaler::scale) 00556 { 00557 #ifndef NDEBUG 00558 breakIntoDebugger = debugPixelX == x && debugPixelY == y; 00559 #endif 00560 //all those bounds checks have only insignificant impact on performance! 00561 const int x_m1 = std::max(x - 1, 0); //perf: prefer array indexing to additional pointers! 00562 const int x_p1 = std::min(x + 1, srcWidth - 1); 00563 const int x_p2 = std::min(x + 2, srcWidth - 1); 00564 00565 Kernel_4x4 ker4 = {}; //perf: initialization is negligible 00566 00567 ker4.a = s_m1[x_m1]; //read sequentially from memory as far as possible 00568 ker4.b = s_m1[x]; 00569 ker4.c = s_m1[x_p1]; 00570 ker4.d = s_m1[x_p2]; 00571 00572 ker4.e = s_0[x_m1]; 00573 ker4.f = s_0[x]; 00574 ker4.g = s_0[x_p1]; 00575 ker4.h = s_0[x_p2]; 00576 00577 ker4.i = s_p1[x_m1]; 00578 ker4.j = s_p1[x]; 00579 ker4.k = s_p1[x_p1]; 00580 ker4.l = s_p1[x_p2]; 00581 00582 ker4.m = s_p2[x_m1]; 00583 ker4.n = s_p2[x]; 00584 ker4.o = s_p2[x_p1]; 00585 ker4.p = s_p2[x_p2]; 00586 00587 //evaluate the four corners on bottom-right of current pixel 00588 unsigned char blend_xy = 0; //for current (x, y) position 00589 { 00590 const BlendResult res = preProcessCorners<ColorDistance>(ker4, cfg); 00591 /* 00592 preprocessing blend result: 00593 --------- 00594 | F | G | //evalute corner between F, G, J, K 00595 ----|---| //current input pixel is at position F 00596 | J | K | 00597 --------- 00598 */ 00599 blend_xy = preProcBuffer[x]; 00600 setBottomR(blend_xy, res.blend_f); //all four corners of (x, y) have been determined at this point due to processing sequence! 00601 00602 setTopR(blend_xy1, res.blend_j); //set 2nd known corner for (x, y + 1) 00603 preProcBuffer[x] = blend_xy1; //store on current buffer position for use on next row 00604 00605 blend_xy1 = 0; 00606 setTopL(blend_xy1, res.blend_k); //set 1st known corner for (x + 1, y + 1) and buffer for use on next column 00607 00608 if (x + 1 < bufferSize) //set 3rd known corner for (x + 1, y) 00609 setBottomL(preProcBuffer[x + 1], res.blend_g); 00610 } 00611 00612 //fill block of size scale * scale with the given color 00613 fillBlock(out, trgWidth * (int)sizeof(uint32_t), ker4.f, Scaler::scale, Scaler::scale); 00614 //place *after* preprocessing step, to not overwrite the results while processing the the last pixel! 00615 00616 //blend four corners of current pixel 00617 if (blendingNeeded(blend_xy)) //good 5% perf-improvement 00618 { 00619 Kernel_3x3 ker3 = {}; //perf: initialization is negligible 00620 00621 ker3.a = ker4.a; 00622 ker3.b = ker4.b; 00623 ker3.c = ker4.c; 00624 00625 ker3.d = ker4.e; 00626 ker3.e = ker4.f; 00627 ker3.f = ker4.g; 00628 00629 ker3.g = ker4.i; 00630 ker3.h = ker4.j; 00631 ker3.i = ker4.k; 00632 00633 blendPixel<Scaler, ColorDistance, ROT_0 >(ker3, out, trgWidth, blend_xy, cfg); 00634 blendPixel<Scaler, ColorDistance, ROT_90 >(ker3, out, trgWidth, blend_xy, cfg); 00635 blendPixel<Scaler, ColorDistance, ROT_180>(ker3, out, trgWidth, blend_xy, cfg); 00636 blendPixel<Scaler, ColorDistance, ROT_270>(ker3, out, trgWidth, blend_xy, cfg); 00637 } 00638 } 00639 } 00640 } 00641 00642 //------------------------------------------------------------------------------------ 00643 00644 template <class ColorGradient> 00645 struct Scaler2x : public ColorGradient 00646 { 00647 static const int scale = 2; 00648 00649 template <unsigned int M, unsigned int N> //bring template function into scope for GCC 00650 static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad<M, N>(pixBack, pixFront); } 00651 00652 00653 template <class OutputMatrix> 00654 static void blendLineShallow(uint32_t col, OutputMatrix& out) 00655 { 00656 alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col); 00657 alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col); 00658 } 00659 00660 template <class OutputMatrix> 00661 static void blendLineSteep(uint32_t col, OutputMatrix& out) 00662 { 00663 alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col); 00664 alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col); 00665 } 00666 00667 template <class OutputMatrix> 00668 static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) 00669 { 00670 alphaGrad<1, 4>(out.template ref<1, 0>(), col); 00671 alphaGrad<1, 4>(out.template ref<0, 1>(), col); 00672 alphaGrad<5, 6>(out.template ref<1, 1>(), col); //[!] fixes 7/8 used in xBR 00673 } 00674 00675 template <class OutputMatrix> 00676 static void blendLineDiagonal(uint32_t col, OutputMatrix& out) 00677 { 00678 alphaGrad<1, 2>(out.template ref<1, 1>(), col); 00679 } 00680 00681 template <class OutputMatrix> 00682 static void blendCorner(uint32_t col, OutputMatrix& out) 00683 { 00684 //model a round corner 00685 alphaGrad<21, 100>(out.template ref<1, 1>(), col); //exact: 1 - pi/4 = 0.2146018366 00686 } 00687 }; 00688 00689 00690 template <class ColorGradient> 00691 struct Scaler3x : public ColorGradient 00692 { 00693 static const int scale = 3; 00694 00695 template <unsigned int M, unsigned int N> //bring template function into scope for GCC 00696 static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad<M, N>(pixBack, pixFront); } 00697 00698 00699 template <class OutputMatrix> 00700 static void blendLineShallow(uint32_t col, OutputMatrix& out) 00701 { 00702 alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col); 00703 alphaGrad<1, 4>(out.template ref<scale - 2, 2>(), col); 00704 00705 alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col); 00706 out.template ref<scale - 1, 2>() = col; 00707 } 00708 00709 template <class OutputMatrix> 00710 static void blendLineSteep(uint32_t col, OutputMatrix& out) 00711 { 00712 alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col); 00713 alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col); 00714 00715 alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col); 00716 out.template ref<2, scale - 1>() = col; 00717 } 00718 00719 template <class OutputMatrix> 00720 static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) 00721 { 00722 alphaGrad<1, 4>(out.template ref<2, 0>(), col); 00723 alphaGrad<1, 4>(out.template ref<0, 2>(), col); 00724 alphaGrad<3, 4>(out.template ref<2, 1>(), col); 00725 alphaGrad<3, 4>(out.template ref<1, 2>(), col); 00726 out.template ref<2, 2>() = col; 00727 } 00728 00729 template <class OutputMatrix> 00730 static void blendLineDiagonal(uint32_t col, OutputMatrix& out) 00731 { 00732 alphaGrad<1, 8>(out.template ref<1, 2>(), col); //conflict with other rotations for this odd scale 00733 alphaGrad<1, 8>(out.template ref<2, 1>(), col); 00734 alphaGrad<7, 8>(out.template ref<2, 2>(), col); // 00735 } 00736 00737 template <class OutputMatrix> 00738 static void blendCorner(uint32_t col, OutputMatrix& out) 00739 { 00740 //model a round corner 00741 alphaGrad<45, 100>(out.template ref<2, 2>(), col); //exact: 0.4545939598 00742 //alphaGrad<7, 256>(out.template ref<2, 1>(), col); //0.02826017254 -> negligible + avoid conflicts with other rotations for this odd scale 00743 //alphaGrad<7, 256>(out.template ref<1, 2>(), col); //0.02826017254 00744 } 00745 }; 00746 00747 00748 template <class ColorGradient> 00749 struct Scaler4x : public ColorGradient 00750 { 00751 static const int scale = 4; 00752 00753 template <unsigned int M, unsigned int N> //bring template function into scope for GCC 00754 static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad<M, N>(pixBack, pixFront); } 00755 00756 00757 template <class OutputMatrix> 00758 static void blendLineShallow(uint32_t col, OutputMatrix& out) 00759 { 00760 alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col); 00761 alphaGrad<1, 4>(out.template ref<scale - 2, 2>(), col); 00762 00763 alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col); 00764 alphaGrad<3, 4>(out.template ref<scale - 2, 3>(), col); 00765 00766 out.template ref<scale - 1, 2>() = col; 00767 out.template ref<scale - 1, 3>() = col; 00768 } 00769 00770 template <class OutputMatrix> 00771 static void blendLineSteep(uint32_t col, OutputMatrix& out) 00772 { 00773 alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col); 00774 alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col); 00775 00776 alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col); 00777 alphaGrad<3, 4>(out.template ref<3, scale - 2>(), col); 00778 00779 out.template ref<2, scale - 1>() = col; 00780 out.template ref<3, scale - 1>() = col; 00781 } 00782 00783 template <class OutputMatrix> 00784 static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) 00785 { 00786 alphaGrad<3, 4>(out.template ref<3, 1>(), col); 00787 alphaGrad<3, 4>(out.template ref<1, 3>(), col); 00788 alphaGrad<1, 4>(out.template ref<3, 0>(), col); 00789 alphaGrad<1, 4>(out.template ref<0, 3>(), col); 00790 00791 alphaGrad<1, 3>(out.template ref<2, 2>(), col); //[!] fixes 1/4 used in xBR 00792 00793 out.template ref<3, 3>() = col; 00794 out.template ref<3, 2>() = col; 00795 out.template ref<2, 3>() = col; 00796 } 00797 00798 template <class OutputMatrix> 00799 static void blendLineDiagonal(uint32_t col, OutputMatrix& out) 00800 { 00801 alphaGrad<1, 2>(out.template ref<scale - 1, scale / 2 >(), col); 00802 alphaGrad<1, 2>(out.template ref<scale - 2, scale / 2 + 1>(), col); 00803 out.template ref<scale - 1, scale - 1>() = col; 00804 } 00805 00806 template <class OutputMatrix> 00807 static void blendCorner(uint32_t col, OutputMatrix& out) 00808 { 00809 //model a round corner 00810 alphaGrad<68, 100>(out.template ref<3, 3>(), col); //exact: 0.6848532563 00811 alphaGrad< 9, 100>(out.template ref<3, 2>(), col); //0.08677704501 00812 alphaGrad< 9, 100>(out.template ref<2, 3>(), col); //0.08677704501 00813 } 00814 }; 00815 00816 00817 template <class ColorGradient> 00818 struct Scaler5x : public ColorGradient 00819 { 00820 static const int scale = 5; 00821 00822 template <unsigned int M, unsigned int N> //bring template function into scope for GCC 00823 static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad<M, N>(pixBack, pixFront); } 00824 00825 00826 template <class OutputMatrix> 00827 static void blendLineShallow(uint32_t col, OutputMatrix& out) 00828 { 00829 alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col); 00830 alphaGrad<1, 4>(out.template ref<scale - 2, 2>(), col); 00831 alphaGrad<1, 4>(out.template ref<scale - 3, 4>(), col); 00832 00833 alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col); 00834 alphaGrad<3, 4>(out.template ref<scale - 2, 3>(), col); 00835 00836 out.template ref<scale - 1, 2>() = col; 00837 out.template ref<scale - 1, 3>() = col; 00838 out.template ref<scale - 1, 4>() = col; 00839 out.template ref<scale - 2, 4>() = col; 00840 } 00841 00842 template <class OutputMatrix> 00843 static void blendLineSteep(uint32_t col, OutputMatrix& out) 00844 { 00845 alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col); 00846 alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col); 00847 alphaGrad<1, 4>(out.template ref<4, scale - 3>(), col); 00848 00849 alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col); 00850 alphaGrad<3, 4>(out.template ref<3, scale - 2>(), col); 00851 00852 out.template ref<2, scale - 1>() = col; 00853 out.template ref<3, scale - 1>() = col; 00854 out.template ref<4, scale - 1>() = col; 00855 out.template ref<4, scale - 2>() = col; 00856 } 00857 00858 template <class OutputMatrix> 00859 static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) 00860 { 00861 alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col); 00862 alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col); 00863 alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col); 00864 00865 alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col); 00866 alphaGrad<1, 4>(out.template ref<scale - 2, 2>(), col); 00867 alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col); 00868 00869 alphaGrad<2, 3>(out.template ref<3, 3>(), col); 00870 00871 out.template ref<2, scale - 1>() = col; 00872 out.template ref<3, scale - 1>() = col; 00873 out.template ref<4, scale - 1>() = col; 00874 00875 out.template ref<scale - 1, 2>() = col; 00876 out.template ref<scale - 1, 3>() = col; 00877 } 00878 00879 template <class OutputMatrix> 00880 static void blendLineDiagonal(uint32_t col, OutputMatrix& out) 00881 { 00882 alphaGrad<1, 8>(out.template ref<scale - 1, scale / 2 >(), col); //conflict with other rotations for this odd scale 00883 alphaGrad<1, 8>(out.template ref<scale - 2, scale / 2 + 1>(), col); 00884 alphaGrad<1, 8>(out.template ref<scale - 3, scale / 2 + 2>(), col); // 00885 00886 alphaGrad<7, 8>(out.template ref<4, 3>(), col); 00887 alphaGrad<7, 8>(out.template ref<3, 4>(), col); 00888 00889 out.template ref<4, 4>() = col; 00890 } 00891 00892 template <class OutputMatrix> 00893 static void blendCorner(uint32_t col, OutputMatrix& out) 00894 { 00895 //model a round corner 00896 alphaGrad<86, 100>(out.template ref<4, 4>(), col); //exact: 0.8631434088 00897 alphaGrad<23, 100>(out.template ref<4, 3>(), col); //0.2306749731 00898 alphaGrad<23, 100>(out.template ref<3, 4>(), col); //0.2306749731 00899 //alphaGrad<1, 64>(out.template ref<4, 2>(), col); //0.01676812367 -> negligible + avoid conflicts with other rotations for this odd scale 00900 //alphaGrad<1, 64>(out.template ref<2, 4>(), col); //0.01676812367 00901 } 00902 }; 00903 00904 00905 template <class ColorGradient> 00906 struct Scaler6x : public ColorGradient 00907 { 00908 static const int scale = 6; 00909 00910 template <unsigned int M, unsigned int N> //bring template function into scope for GCC 00911 static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad<M, N>(pixBack, pixFront); } 00912 00913 00914 template <class OutputMatrix> 00915 static void blendLineShallow(uint32_t col, OutputMatrix& out) 00916 { 00917 alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col); 00918 alphaGrad<1, 4>(out.template ref<scale - 2, 2>(), col); 00919 alphaGrad<1, 4>(out.template ref<scale - 3, 4>(), col); 00920 00921 alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col); 00922 alphaGrad<3, 4>(out.template ref<scale - 2, 3>(), col); 00923 alphaGrad<3, 4>(out.template ref<scale - 3, 5>(), col); 00924 00925 out.template ref<scale - 1, 2>() = col; 00926 out.template ref<scale - 1, 3>() = col; 00927 out.template ref<scale - 1, 4>() = col; 00928 out.template ref<scale - 1, 5>() = col; 00929 00930 out.template ref<scale - 2, 4>() = col; 00931 out.template ref<scale - 2, 5>() = col; 00932 } 00933 00934 template <class OutputMatrix> 00935 static void blendLineSteep(uint32_t col, OutputMatrix& out) 00936 { 00937 alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col); 00938 alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col); 00939 alphaGrad<1, 4>(out.template ref<4, scale - 3>(), col); 00940 00941 alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col); 00942 alphaGrad<3, 4>(out.template ref<3, scale - 2>(), col); 00943 alphaGrad<3, 4>(out.template ref<5, scale - 3>(), col); 00944 00945 out.template ref<2, scale - 1>() = col; 00946 out.template ref<3, scale - 1>() = col; 00947 out.template ref<4, scale - 1>() = col; 00948 out.template ref<5, scale - 1>() = col; 00949 00950 out.template ref<4, scale - 2>() = col; 00951 out.template ref<5, scale - 2>() = col; 00952 } 00953 00954 template <class OutputMatrix> 00955 static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) 00956 { 00957 alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col); 00958 alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col); 00959 alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col); 00960 alphaGrad<3, 4>(out.template ref<3, scale - 2>(), col); 00961 00962 alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col); 00963 alphaGrad<1, 4>(out.template ref<scale - 2, 2>(), col); 00964 alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col); 00965 alphaGrad<3, 4>(out.template ref<scale - 2, 3>(), col); 00966 00967 out.template ref<2, scale - 1>() = col; 00968 out.template ref<3, scale - 1>() = col; 00969 out.template ref<4, scale - 1>() = col; 00970 out.template ref<5, scale - 1>() = col; 00971 00972 out.template ref<4, scale - 2>() = col; 00973 out.template ref<5, scale - 2>() = col; 00974 00975 out.template ref<scale - 1, 2>() = col; 00976 out.template ref<scale - 1, 3>() = col; 00977 } 00978 00979 template <class OutputMatrix> 00980 static void blendLineDiagonal(uint32_t col, OutputMatrix& out) 00981 { 00982 alphaGrad<1, 2>(out.template ref<scale - 1, scale / 2 >(), col); 00983 alphaGrad<1, 2>(out.template ref<scale - 2, scale / 2 + 1>(), col); 00984 alphaGrad<1, 2>(out.template ref<scale - 3, scale / 2 + 2>(), col); 00985 00986 out.template ref<scale - 2, scale - 1>() = col; 00987 out.template ref<scale - 1, scale - 1>() = col; 00988 out.template ref<scale - 1, scale - 2>() = col; 00989 } 00990 00991 template <class OutputMatrix> 00992 static void blendCorner(uint32_t col, OutputMatrix& out) 00993 { 00994 //model a round corner 00995 alphaGrad<97, 100>(out.template ref<5, 5>(), col); //exact: 0.9711013910 00996 alphaGrad<42, 100>(out.template ref<4, 5>(), col); //0.4236372243 00997 alphaGrad<42, 100>(out.template ref<5, 4>(), col); //0.4236372243 00998 alphaGrad< 6, 100>(out.template ref<5, 3>(), col); //0.05652034508 00999 alphaGrad< 6, 100>(out.template ref<3, 5>(), col); //0.05652034508 01000 } 01001 }; 01002 01003 //------------------------------------------------------------------------------------ 01004 01005 struct ColorDistanceRGB 01006 { 01007 static double dist(uint32_t pix1, uint32_t pix2, double luminanceWeight) 01008 { 01009 (void)luminanceWeight; 01010 01011 return distYCbCrBuffered(pix1, pix2); 01012 01013 //if (pix1 == pix2) //about 4% perf boost 01014 // return 0; 01015 //return distYCbCr(pix1, pix2, luminanceWeight); 01016 } 01017 }; 01018 01019 struct ColorDistanceARGB 01020 { 01021 static double dist(uint32_t pix1, uint32_t pix2, double luminanceWeight) 01022 { 01023 (void)luminanceWeight; 01024 01025 const double a1 = getAlpha(pix1) / 255.0 ; 01026 const double a2 = getAlpha(pix2) / 255.0 ; 01027 /* 01028 Requirements for a color distance handling alpha channel: with a1, a2 in [0, 1] 01029 01030 1. if a1 = a2, distance should be: a1 * distYCbCr() 01031 2. if a1 = 0, distance should be: a2 * distYCbCr(black, white) = a2 * 255 01032 3. if a1 = 1, ??? maybe: 255 * (1 - a2) + a2 * distYCbCr() 01033 */ 01034 01035 //return std::min(a1, a2) * distYCbCrBuffered(pix1, pix2) + 255 * abs(a1 - a2); 01036 //=> following code is 15% faster: 01037 const double d = distYCbCrBuffered(pix1, pix2); 01038 if (a1 < a2) 01039 return a1 * d + 255 * (a2 - a1); 01040 else 01041 return a2 * d + 255 * (a1 - a2); 01042 01043 //alternative? return std::sqrt(a1 * a2 * square(distYCbCrBuffered(pix1, pix2)) + square(255 * (a1 - a2))); 01044 } 01045 }; 01046 01047 01048 struct ColorDistanceUnbufferedARGB 01049 { 01050 static double dist(uint32_t pix1, uint32_t pix2, double luminanceWeight) 01051 { 01052 const double a1 = getAlpha(pix1) / 255.0 ; 01053 const double a2 = getAlpha(pix2) / 255.0 ; 01054 01055 const double d = distYCbCr(pix1, pix2, luminanceWeight); 01056 if (a1 < a2) 01057 return a1 * d + 255 * (a2 - a1); 01058 else 01059 return a2 * d + 255 * (a1 - a2); 01060 } 01061 }; 01062 01063 01064 struct ColorGradientRGB 01065 { 01066 template <unsigned int M, unsigned int N> 01067 static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) 01068 { 01069 pixBack = gradientRGB<M, N>(pixFront, pixBack); 01070 } 01071 }; 01072 01073 struct ColorGradientARGB 01074 { 01075 template <unsigned int M, unsigned int N> 01076 static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) 01077 { 01078 pixBack = gradientARGB<M, N>(pixFront, pixBack); 01079 } 01080 }; 01081 } 01082 01083 01084 void xbrz::scale(size_t factor, const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight, ColorFormat colFmt, const xbrz::ScalerCfg& cfg, int yFirst, int yLast) 01085 { 01086 static_assert(SCALE_FACTOR_MAX == 6, ""); 01087 switch (colFmt) 01088 { 01089 case ColorFormat::RGB: 01090 switch (factor) 01091 { 01092 case 2: 01093 return scaleImage<Scaler2x<ColorGradientRGB>, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); 01094 case 3: 01095 return scaleImage<Scaler3x<ColorGradientRGB>, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); 01096 case 4: 01097 return scaleImage<Scaler4x<ColorGradientRGB>, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); 01098 case 5: 01099 return scaleImage<Scaler5x<ColorGradientRGB>, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); 01100 case 6: 01101 return scaleImage<Scaler6x<ColorGradientRGB>, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); 01102 } 01103 break; 01104 01105 case ColorFormat::ARGB: 01106 switch (factor) 01107 { 01108 case 2: 01109 return scaleImage<Scaler2x<ColorGradientARGB>, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); 01110 case 3: 01111 return scaleImage<Scaler3x<ColorGradientARGB>, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); 01112 case 4: 01113 return scaleImage<Scaler4x<ColorGradientARGB>, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); 01114 case 5: 01115 return scaleImage<Scaler5x<ColorGradientARGB>, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); 01116 case 6: 01117 return scaleImage<Scaler6x<ColorGradientARGB>, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); 01118 } 01119 break; 01120 01121 case ColorFormat::ARGB_UNBUFFERED: 01122 switch (factor) 01123 { 01124 case 2: 01125 return scaleImage<Scaler2x<ColorGradientARGB>, ColorDistanceUnbufferedARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); 01126 case 3: 01127 return scaleImage<Scaler3x<ColorGradientARGB>, ColorDistanceUnbufferedARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); 01128 case 4: 01129 return scaleImage<Scaler4x<ColorGradientARGB>, ColorDistanceUnbufferedARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); 01130 case 5: 01131 return scaleImage<Scaler5x<ColorGradientARGB>, ColorDistanceUnbufferedARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); 01132 case 6: 01133 return scaleImage<Scaler6x<ColorGradientARGB>, ColorDistanceUnbufferedARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); 01134 } 01135 break; 01136 } 01137 assert(false); 01138 } 01139 01140 01141 bool xbrz::equalColorTest(uint32_t col1, uint32_t col2, ColorFormat colFmt, double luminanceWeight, double equalColorTolerance) 01142 { 01143 switch (colFmt) 01144 { 01145 case ColorFormat::RGB: 01146 return ColorDistanceRGB::dist(col1, col2, luminanceWeight) < equalColorTolerance; 01147 case ColorFormat::ARGB: 01148 return ColorDistanceARGB::dist(col1, col2, luminanceWeight) < equalColorTolerance; 01149 case ColorFormat::ARGB_UNBUFFERED: 01150 return ColorDistanceUnbufferedARGB::dist(col1, col2, luminanceWeight) < equalColorTolerance; 01151 } 01152 assert(false); 01153 return false; 01154 } 01155 01156 01157 void xbrz::bilinearScale(const uint32_t* src, int srcWidth, int srcHeight, 01158 uint32_t* trg, int trgWidth, int trgHeight) 01159 { 01160 bilinearScale(src, srcWidth, srcHeight, srcWidth * (int)sizeof(uint32_t), 01161 trg, trgWidth, trgHeight, trgWidth * (int)sizeof(uint32_t), 01162 0, trgHeight, [](uint32_t pix) { return pix; }); 01163 } 01164 01165 01166 void xbrz::nearestNeighborScale(const uint32_t* src, int srcWidth, int srcHeight, 01167 uint32_t* trg, int trgWidth, int trgHeight) 01168 { 01169 nearestNeighborScale(src, srcWidth, srcHeight, srcWidth * (int)sizeof(uint32_t), 01170 trg, trgWidth, trgHeight, trgWidth * (int)sizeof(uint32_t), 01171 0, trgHeight, [](uint32_t pix) { return pix; }); 01172 } 01173 01174 01175 #if 0 01176 //#include <ppl.h> 01177 void bilinearScaleCpu(const uint32_t* src, int srcWidth, int srcHeight, 01178 uint32_t* trg, int trgWidth, int trgHeight) 01179 { 01180 const int TASK_GRANULARITY = 16; 01181 01182 concurrency::task_group tg; 01183 01184 for (int i = 0; i < trgHeight; i += TASK_GRANULARITY) 01185 tg.run([=] 01186 { 01187 const int iLast = std::min(i + TASK_GRANULARITY, trgHeight); 01188 xbrz::bilinearScale(src, srcWidth, srcHeight, srcWidth * sizeof(uint32_t), 01189 trg, trgWidth, trgHeight, trgWidth * sizeof(uint32_t), 01190 i, iLast, [](uint32_t pix) { return pix; }); 01191 }); 01192 tg.wait(); 01193 } 01194 01195 01196 //Perf: AMP vs CPU: merely ~10% shorter runtime (scaling 1280x800 -> 1920x1080) 01197 //#include <amp.h> 01198 void bilinearScaleAmp(const uint32_t* src, int srcWidth, int srcHeight, //throw concurrency::runtime_exception 01199 uint32_t* trg, int trgWidth, int trgHeight) 01200 { 01201 //C++ AMP reference: https://msdn.microsoft.com/en-us/library/hh289390.aspx 01202 //introduction to C++ AMP: https://msdn.microsoft.com/en-us/magazine/hh882446.aspx 01203 using namespace concurrency; 01204 //TODO: pitch 01205 01206 if (srcHeight <= 0 || srcWidth <= 0) return; 01207 01208 const float scaleX = static_cast<float>(trgWidth ) / srcWidth; 01209 const float scaleY = static_cast<float>(trgHeight) / srcHeight; 01210 01211 array_view<const uint32_t, 2> srcView(srcHeight, srcWidth, src); 01212 array_view< uint32_t, 2> trgView(trgHeight, trgWidth, trg); 01213 trgView.discard_data(); 01214 01215 parallel_for_each(trgView.extent, [=](index<2> idx) restrict(amp) //throw ? 01216 { 01217 const int y = idx[0]; 01218 const int x = idx[1]; 01219 //Perf notes: 01220 // -> float-based calculation is (almost 2x) faster than double! 01221 // -> no noticeable improvement via tiling: https://msdn.microsoft.com/en-us/magazine/hh882447.aspx 01222 // -> no noticeable improvement with restrict(amp,cpu) 01223 // -> iterating over y-axis only is significantly slower! 01224 // -> pre-calculating x,y-dependent variables in a buffer + array_view<> is ~ 20 % slower! 01225 const int y1 = srcHeight * y / trgHeight; 01226 int y2 = y1 + 1; 01227 if (y2 == srcHeight) --y2; 01228 01229 const float yy1 = y / scaleY - y1; 01230 const float y2y = 1 - yy1; 01231 //------------------------------------- 01232 const int x1 = srcWidth * x / trgWidth; 01233 int x2 = x1 + 1; 01234 if (x2 == srcWidth) --x2; 01235 01236 const float xx1 = x / scaleX - x1; 01237 const float x2x = 1 - xx1; 01238 //------------------------------------- 01239 const float x2xy2y = x2x * y2y; 01240 const float xx1y2y = xx1 * y2y; 01241 const float x2xyy1 = x2x * yy1; 01242 const float xx1yy1 = xx1 * yy1; 01243 01244 auto interpolate = [=](int offset) 01245 { 01246 /* 01247 https://en.wikipedia.org/wiki/Bilinear_interpolation 01248 (c11(x2 - x) + c21(x - x1)) * (y2 - y ) + 01249 (c12(x2 - x) + c22(x - x1)) * (y - y1) 01250 */ 01251 const auto c11 = (srcView(y1, x1) >> (8 * offset)) & 0xff; 01252 const auto c21 = (srcView(y1, x2) >> (8 * offset)) & 0xff; 01253 const auto c12 = (srcView(y2, x1) >> (8 * offset)) & 0xff; 01254 const auto c22 = (srcView(y2, x2) >> (8 * offset)) & 0xff; 01255 01256 return c11 * x2xy2y + c21 * xx1y2y + 01257 c12 * x2xyy1 + c22 * xx1yy1; 01258 }; 01259 01260 const float bi = interpolate(0); 01261 const float gi = interpolate(1); 01262 const float ri = interpolate(2); 01263 const float ai = interpolate(3); 01264 01265 const auto b = static_cast<uint32_t>(bi + 0.5f); 01266 const auto g = static_cast<uint32_t>(gi + 0.5f); 01267 const auto r = static_cast<uint32_t>(ri + 0.5f); 01268 const auto a = static_cast<uint32_t>(ai + 0.5f); 01269 01270 trgView(y, x) = (a << 24) | (r << 16) | (g << 8) | b; 01271 }); 01272 trgView.synchronize(); //throw ? 01273 } 01274 #endif